Perception to visualization II

C. Andrews

2016-02-29

Characteristics of visual variables

Selective

is a change in just this variable enough to make a mark distinct?

Associative

can marks sharing this attribute be grouped despite other variables?

Quantitative

if two marks differ in this variable, can we extract a numerical relationship?

Order

can we order marks based on the values of this variable

Length

across how many changes in this variable are distinctions recognizable?

Eight Visual Variables

Position

Mark or Glyph or Shape Size (length, area, volume) Brightness or Luminance Color Orientation Texture

Motion

Steven's power law

 $\psi(I) = kI^a$

sensation	exponent	
shock	3.5	
discomfort, cold	1.7	
length	1	
area	0.7	
brightness	0.5	

Weber's Law

JNB - Just Noticeable Difference

The perceptible difference proportional to the ratio of the difference in stimulus and the current stimulus

Brightness or Luminance

Luminance characteristics

Visual Variable: Value				
	selective			
	associative			
ź	quantitative			
	order	<<<	<	<
	length		inite but practically lims selection ~ < 7 and dist	

Color

1

Color

Visual perception

Universal (?) colors

Color names: XKCD survey

RGB cube from http://www.argyllcms.com/doc/timage.html

http://blog.xkcd.com/2010/05/03/color-survey-results/

Opponent Process model

no "reddish-green" or "bluish-yellow"

Munsell's color system

Hue, saturation, brightness/value/intensity

CIE XYZ

Color gamut

Color blindness

Protanopia

Deuteranopia

Tritanopia

generated with <u>http://www.vischeck.com</u> rainbows from Wikimedia Commons

Color blindness

Complementary colors

Complimentary colors

The Cafe Terrace on the Place du Forum Vincent van Gogh

Simultaneous contrast

Josef Albers

Simultaneous contrast

Josef Albers

Chromatic adaptation

Color Constancy

Chromatic adaptation

Color Constancy

Visual aggregation

While color is good for distinguishing between objects, it is important to

Effects of size

Cultural conventions

Thoughts about using color

- Use only a few colors (~6)
- Colors should be named and distinct
- As objects get smaller, increase saturation
- Make sure you have luminance contrast between figure and ground
- Don't assume color will be perceived the same in multiple contexts
- Be attentive to cultural conventions and symbolism
- Be aware of bad interactions (like red/blue)
- Respect the color blind

Characteristics of color

Visual Variable: Colour				
	selective			
	associative			
Ź	quantitative			
ź	order		≮ □≮□;	< ॑
	length			
			Finite but practically line selection $\sim < 7$ and dist	

Rainbow maps

hue is periodic, not monotonic

Orientation

Orientation characteristics

Texture

Combination of other variables

marks color orientation

Texture characteristics

Visual Variable: Grain			
	Selective		
	associative		
Ł	quantitative	$\bullet = ? \bullet = ?$	
Ł	order		
	Length	 theoretically infinite but practically limited association and selection ~ < 5 	

Motion

Hans Rosling: The best stats you've ever seen

http://www.ted.com/talks/hans rosling shows the best stats you ve ever seen.html http://www.gapminder.org

Summary of characteristics

	selective	associative	quantitative	order	length
position				\checkmark	
shape	maybe	maybe	X	X	
size		\checkmark	maybe	\checkmark	
brightness	\checkmark	\checkmark	X	\checkmark	
color	\checkmark	\checkmark	X	X	
orientation	\checkmark		X	X	
texture	\checkmark	\checkmark	X	X	

Picking an encoding

Principle of Consistency

The properties of the image (visual variables) should match the properties of the data

Principle of Importance Ordering

Encode the most important information in the most effective way

Quantitative estimation ranking

most accurate position, aligned scale position, identical nonaligned scales length angle, slope area, volume color least accurate

Cleveland and McGill, 1984

Mackinlay's ranking of encodings

Quantitative

position length angle slope area volume density saturation hue texture connection containment shape

Ordinal position density saturation hue texture connection containment length angle slope area volume shape

Nominal position hue texture connection containment density saturation shape length angle slope area volume