Perception to visualization II

C. Andrews

Characteristics of visual variables

Selective

is a change in just this variable enough to make a mark distinct?
Associative
can marks sharing this attribute be grouped despite other variables?

Quantitative

if two marks differ in this variable, can we extract a numerical relationship?

Order

can we order marks based on the values of this variable

Length

across how many changes in this variable are distinctions recognizable?

Eight Visual Variables

Position

Mark or Glyph or Shape
Size (length, area, volume)
Brightness or Luminance
Color
Orientation
Texture
Motion

Steven's power law

Weber's Law

JNB - Just Noticeable Difference
$d p=k \frac{d S}{S} \quad \begin{aligned} & \text { The perceptible difference proportional to } \\ & \text { ratio of the difference in stimulus and the } \\ & \text { current stimulus }\end{aligned}$

Brightness or Luminance

Luminance characteristics

Visual Variable: Value		
	selective	
	associative	
2	quantitative	
	order	
	length	- theoretically infinite but practically limited - association and selection $\sim<7$ and distinction ~ 10

Color

Color

Visual perception

Universal (?) colors

Color names: XKCD survey

Color names

Greens

Blues

Opponent Process model

Long (red)

no "reddish-green" or "bluish-yellow"

Munsell's color system

Hue, saturation, brightness/value/intensity

Color gamut

AdobeRGB

ProPhotoRGB

Wide Gamut RGB

Color blindness

Protanopia

Color blindness

Complementary colors

Complimentary colors

The Cafe Terrace on the Place du Forum
Vincent van Gogh

Simultaneous contrast

Josef Albers

Simultaneous contrast

Josef Albers

Chromatic adaptation

Color Constancy

Chromatic adaptation

Color Constancy

Chromatic adaptation

Color Constancy
210,177,137
253,189,44

178,180,185
$242,196,44$

Visual aggregation

Chromostereopsis

Chromostereopsis

 depth caused
\qquad

incIUOCO

\qquad

eye

thank you

Color vs contrast

While color is good for distinguishing between objects, it is important to note that color alone is not enough. If the luminance of two colors is the
between the two values.

Effects of size

Cultural conventions

g

Thoughts about using color

Use only a few colors (~6)
Colors should be named and distinct
As objects get smaller, increase saturation
Make sure you have luminance contrast between figure and ground
Don't assume color will be perceived the same in multiple contexts
Be attentive to cultural conventions and symbolism
Be aware of bad interactions (like red/blue)
Respect the color blind

Characteristics of color

Visual Variable: Colour		
V	selective	
	associative	
2	quantitative	
2	order	$\square ¢ \square$
V	length	- theoretically infinite but practically limited - association and selection $\sim<7$ and distinction ~ 10

Rainbow maps

hue is periodic, not monotonic

Orientation

Orientation characteristics

Visual variale: Orientation		
\checkmark	ssaxate	$\rightarrow M 1 / 1-$
\checkmark	Suis	
t	${ }_{\text {emamalies }}$	$?><1<1<1$
t	odet	-*\1**1
\checkmark	Legent	$-1 /$

Texture

Combination of other variables

marks
color
orientation

Texture characteristics

Visual Variable: Grain		
V	Selective	$\bigcirc 0_{0} \bigcirc_{0}$
V	associative	
\underline{L}	quantitative	$\bigcirc \quad \bullet \quad$?
\underline{L}	order	$0 k 0 \leqslant 0$
V	Length	- theoretically infinite but practically limited association and selection $\sim<5$

Motion

Hans Rosling: The best stats you've ever seen http://www.ted.com/talks/hans rosling shows the best stats you ve ever seen.html http://www.gapminder.org

Summary of characteristics

| |
| :---: | selective

Picking an encoding

Principle of Consistency

The properties of the image (visual variables) should match the properties of the data

Principle of Importance Ordering

Encode the most important information in the most effective way

Quantitative estimation ranking

position, identical nonaligned scales
length
angle, slope
area, volume
color
position, aligned scale
Cleveland and McGill, 1984

```

\section*{Mackinlay's ranking of encodings}

\author{
Quantitative \\ position \\ length \\ angle \\ slope \\ area \\ volume \\ density \\ saturation \\ hue \\ texture \\ connection \\ containment \\ shape
}

Ordinal
position
density
saturation
hue
texture
connection
containment
length
angle
slope
area
volume
shape

Nominal
position
hue
texture
connection
containment
density
saturation
shape
length
angle
slope
area
volume```

